UTCI
The Universal Thermal Climate Index

COST TC April 22-23, 2004 in Langen

Gerd Jendritzky

Deutscher Wetterdienst, Freiburg, Germany
Why UTCI?

- Assessment of the thermal environment: Key issue in human biometeorology
- History: >100 simple thermal indices
- Last 30 years: heat budget modelling
- Integration of new knowledge and concerns
- Need: harmonization \rightarrow UTCI (ISB, WMO)
- COST? (Example: UV-Index)
Key applications

Daily forecasts
- Public weather service
- Warnings (heat load (HHWS), cold stress (windchill))
- Advice (clothing, outdoor activities)

Climate
- Bioclimatological assessments
- Bioclimate maps in all scales (micro - macro)
- Urban design, engineering of outdoor spaces
- Consultancy for residence
- Outdoor recreation and climatotherapy
- Epidemiology
- Climate impact research
Perceived Temperature PT August 12, 2003

heat load

- extreme
- strong
- moderate
- slight
- comfortable

cold stress

UTC
13:00
Hypothetical heat warnings in 2003
Deutscher Wetterdienst
Human Biometeorology

\[\text{height} \]

\[\text{width} \]

\[\text{Tair} \]

\[\Delta \text{TMRT} \]

\[\text{PT} \]

\[\text{PT} \]

\[\text{Tsurface} \]

\[\frac{|V|}{\text{ms}^{-1}} \]

\[\text{PT} \]

\[42 ^\circ \text{C} \]

\[38 \]

\[34 \]

\[30 \]

\[26 \]

\[34 \]

\[36 \]

\[38 ^\circ \text{C} \]

\[\text{Twall} \]

\[\text{Twall} \]
Deutscher Wetterdienst
Human Biometeorology

Berlin

frequency of heat load
Deutscher Wetterdienst
Human Biometeorology

July
Δ Perceived Temperature PT (July) 2041-50 and 1971-80, „business-as-usual“ (IS92a)

ECHAM4/T106
DKRZ Hamburg
Why UTCI?

• Assessment of the thermal environment: Key issue in human biometeorology
• History: >100 simple thermal indices
• Last 30 years: heat budget modelling
• Integration of new knowledge and concerns
• Need: harmonization → UTCI (ISB, WMO)
• COST? (Example: UV-Index)
The Thermal Environment

PT
The human heat budget

\[M + W + Q^* + Q_H + Q_L + Q_{SW} + Q_{Re} = 0 \]

- **M**: metabolic rate
- **W**: mechanical power
- **Q^***: radiation budget
- **Q_H**: turbulent flux of sensible heat
- **Q_L**: turbulent flux of latent heat (diffusion of water vapour)
- **Q_{SW}**: turbulent flux of latent heat (sweat evaporation)
- **Q_{Re}**: respiratory heat flux (sensible and latent)
Thermophysiological Assessment of the Thermal Environment

<table>
<thead>
<tr>
<th>ASHRAE code</th>
<th>Descriptive term</th>
<th>Thermophysiology</th>
<th>Meteorology</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT*</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUT_SET*</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT 1,2,3</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(WCT)</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_sk</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>kgs⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_Sk</td>
<td>Wm⁻²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_sk</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_cl</td>
<td>clo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heat budget models

(One or two nodes)

- Fanger (1970)
- Jendritzky et al. (1979, 1991)
- Steadman (1984, 1994)
- Hoeppe (1984, 1999)
- Gagge et al. (1986)
- Blazejczyk (1994)
- Horikoshi et al. (1995, 1997)
- Pickup & de Dear (2000)
- Bluestein & Osczevski (2002)
- etc.
Why UTCI?

- Assessment of the thermal environment: Key issue in human biometeorology
- History: >100 simple thermal indices
- Last 30 years: heat budget modelling
- Integration of new knowledge and concerns
- Need: harmonization → UTCI (ISB, WMO)
- COST? (Example: UV-Index)
Simulated whole body and local thermophysiological variables

- Mean skin temperature, $T_{sk,m}$
- Head core temperature (hypothalamus), T_{hy}
- Total evaporative heat loss from the skin, E_{sk}
- Skin wettedness, w_{sk}
- Local skin temperatures of face and hands, $T_{sk,f,h}$
- Cooling time for $T_{sk,f,h} < 0^\circ C$

Assessment problem!
Variables for multi-node model simulations

Meteorological input

- **Air temperature** (T_a): $-40^\circ C < T_a < +45^\circ C$ 5K
- **Mean radiant temperature** (T_{mrt}): $-10K < T_{mrt} - T_a < +40K$ 10K
- **Relative humidity** (rh): $5% < rh < 95%$ 15%
- **Relative wind speed** (v_r): 1.1, 2.2, 4.4, 8.8, 17.6 m/s (*2)

Intrinsic clothing (Icl): 0.4, 0.6, 0.9, 1.3, 1.8, 2.6 clo

⇒ 22680 combinations (partially unrealistic, but which?)
Reference conditions for UTCI temperature*

- Activity walking 4 km/h = 2.3 MET (~135 Wm⁻²)
- Calm wind, i.e. only wind induced by walking (1.1 m/s)
- \(T_{mrt} = T_a \)
- \(\text{rh} = 50\% \)
- \(I_{cl}: \text{variable (0.5 -2.0 clo)} \)

*Temperature of a reference environment that provides the same heat exchange as under the actual thermal conditions
Summary: Basic features of UTCI

- Thermophysiologically significant in the whole range of heat exchange conditions
- Valid in all climates, seasons and scales
- Useful for key applications in human biometeorology
- Steady-state conditions → practically useful results
- Independent of individual characteristics
- Prediction of whole body and local thermal effects
- Based on the most advanced multi-node models
- Temperature scale index
Selected subproblems

• Heat budget modelling
• Assessment of physiological variables
• Acclimatisation
• Meteorological input, in particular radiation $\rightarrow T_{mrt}$
• Definition of areas of validity, requirements
• ?
Why UTCI?

• Assessment of the thermal environment: Key issue in human biometeorology
• History: >100 simple thermal indices
• Last 30 years: heat budget modelling
• Integration of new knowledge and concerns
• Need: harmonization → UTCI (ISB, WMO)
• COST? (Example: UV-Index)
Deutscher Wetterdienst
Human Biometeorology

Dr. Krzysztof Blazejczyk, Warsaw, Poland
Prof. Dr. Nicol Fergus, London, UK
Dr. Dusan Fiala, Leicester, UK
Dr. George Havenith, Oxford, UK
Prof. Dr. Peter Höppe, München, Germany
Prof. Dr. Ingvar Holmér, Lund, Sweden
Prof. Dr. Gerd Jendritzky, Freiburg, Germany
Dr. Glenn McGregor, Birmingham, UK
Prof. Dr. Simone Orlandini, Firenze, Italy